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SHORT COMMUNICATION

THE GRUNWALD-WINSTEIN TYPE CORRELATION FOR 2-CHLORO-2,4,4-
TRIMETHYLPENTANE: A SIMPLE TERTIARY ALKYL CHLORIDE THAT SHOWS
ESSENTIALLY LIMITING BEHAVIOUR IN SOLVOLYSIS

KEN'ICHI TAKEUCHI, * YASUSHI OHGA, TAKUHIRO USHINO AND MASAAKI TAKASUKA
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01,
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Evaluation of the rates of solvolysis of 2-chloro-2,4,4-trimethylpentane (4) in 17 solvents on the basis of the
Grunwald-Winstein type equation [log(k/k,)=IN.+ mYy+c] gives an excellent correlation with
1=-0-01£0-02 and m=0-74+0-01. The neopentyl group in 4 more effectively shields the rear side of the
reaction center than the tert-butyl group in 2-chloro-2,3,3-trimethylbutane. The rate ratio between 4 and 2-
chloro-2-methylpropane (3) at 25 °C is 275 in trifluoroethanol and predicted to increase to 950 in trifluoroacetic
acid. The previous 4:3 rate ratio of 22 in 80% ethanol evidently underestimated the B-strain effect on tlie

solvolysis rate of 4 by a factor of at least 40.

The major solvent intervention in solvolytic reactions
has been evaluated by the extended Grunwald—Winstein
equation:'

log(k/ke) = IN +mY + ¢ (1)

The equation includes the nucleophilic (N) and elec-
trophilic (¥) parameters of solvents, where k, and k refer to
the specific rates of solvolysis in 80% aqueous ethanol and
a given solvent, respectively, and c is the intercept.' The N
parameter is based on the solvolyses of methyl tosylate'®
(Nor,) or S-methyldibenzothiophenium ion? (N;). As the Y
parameter for alkyl chloride solvolyses it has been recom-
mended to use Y, which is based on 1-chloroadamantane
(1) as a standard substrate (/=0-000, m=1.000).?
Recently, Kevill and D’Souza'® applied equation (2) to the
solvolysis rates of 2-chloro-2,3,3-trimethylbutane (2) that
had been reported by Liu et al.,* and showed the / and m
values to be 0-10+0-04 and 0-82+0-04, respectively.
Although the number of rate data was limited (n = 10), the
relatively small / value suggested a marked decrease in
nucleophilic solvent intervention compared with 2-chloro-
2-methylpropane (3) (/=0-37+0-04, m=0-89+0-04)"
in the same solvents.

log(k/ky) = INp+ mYq + c ?)

* Author to whom correspondence should be addressed.
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We now report that 2-chloro-2,4,4-trimethylpentane
(4) is an open-chain tertiary alkyl substrate that under-
goes essentially limiting Sy1 solvolysis. Actually, 4 was
used more than four decades ago as the first model
compound for examination of the back strain (B-strain)
effect in solvolysis.” However, the greater rear-side
shielding effect of the neopentyl group in 4 toward
nucleophilic solvent intervention than the ters-butyl
group in 2 has never been noticed.

The rates of solvolysis of 4 were determined in various
solvents by a titrimetric or a conductimetric method in the
presence of 0-025 or 0-0002M of 2,6-lutidine,
respectively.® The rates of 4 in trifluoroacetic acid (TFA),
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formic acid and 1,1,1,3,3,3-hexafluoropropan-2-ol
(HFIP) were expected to be too fast to be measured;
therefore, these solvents were not included. The low
solubilities of 4 and solvolysis products in aqueous
solvents hampered the rate studies in 40% acetone, 50%
methanol and 50% ethanol and their more aqueous
mixtures. The specific rates are summarized in Table 1
and the plot of log k values against Y is shown in
Figure 1. For comparisons similar plots are also shown
for 2* and 3"° by using selected reported data. The
products of solvolysis of 4 were examined in methanol-
ysis and acetolysis at 50°C under buffered conditions.
The major products were the expected alkenes,
2,4 4-trimethylpent-1- and -2-enes; a single substitution
product was formed in 35% and 9% yields in
methanolysis and acetolysis, respectively.

Table 1. Specific rates for the solvolysis of 4 at 25-0°C

Solvent® 10% (s~1H)° Solvent® 10%k (s~')®
100E 0-373¢ 90A 0-454
90E 4-19 80A 4.61
80E 20-3 70A 24.5
70E 65-9 60A 129¢
60E 205¢ 50A 521¢
100M 3-54¢ AcOH 1-61°
8OM 79-4 100T 2860°
60M 1040¢ 70T 3590¢
50T 5790¢

*E, M, A, and T denote ethanol, methanol, acetone and 2,2,2-
trifluoroethanol, respectively, and the preceding for E, M and A
indicate volume % of the organic components in aqueous mixtures at
25 °C and those for T denote weight % of T.

"Determined titrimetrically in the presence of 0.025 M 2,6-lutidine
within an experimental error of +2% unless noted otherwise.
‘k=970x105s™" at 50-0°C; AH'=24-4kcaimol™’; AS*=
—1-7 calK~'mol ' (1 keal = 4-184 kJ).

! Determined conductimetrically in the presence of 2x 107 M 2,6-
lutidine within an experimental error of +1%.

¢k=730x10"%s" at 50-0°C; AH*=22.6kcalmol™'; AS*=
~3-2 calK~'mol .

k=289x10"*s™' at 50-0°C; AH*'=21-5kcalmol™!; AS*=
-8:3 calK 'mol .
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Figure 1. Plots of log k against Y, for the solvolyses of (®) 2,

@) 3 and (O) 4 at 25°C. The points for 3 are shifted

downward by 1 unit for clarity. For the references for Y, 2
and 3, see text

It has been well recognized that downward
deviations of the points for fluorinated alcohols
[2,2,2-trifluoroethanol (TFE) and HFIP] and carbox-
ylic acids (TFA, HCO,H and AcOH) in the correlation
with Y indicate the involvement of nucleophilic
solvent intervention in non-fluorinated alcohols and
aqueous organic solvents, such as aqueous ethanol,
acetone and dioxane.'*® As Figure 1 shows, the perfect
fit of the points for AcOH, TFE, 70% TFE and 50%
TFE for 4 to a single straight line (m=0-75+0-01,
r=0-998) is in accord with the essential absence of
nucleophilic solvent intervention in the transition state
of ionization.

Table 2. Correlation of specific rates of solvolysis of 2—4 against N;* and Y® by using the
extended Grunwald—Winstein equation (2)

d d

Substrate nt I m c re
2 10 0-10+0-04f 0-82+0-04f 0-13£0-117 0-996f
3 10 0-37+0-04f 0-89+0.04f 0-03x0-11f 0.995f
4 17 ~-0.01£0-02 0-74 +£0-01 0-04+0-02 0-998

*Ref. 2.

"Ref. 1d.

“Number of solvents. Same solvents for 2 and 3; see Refs le and 4.

4Using equation (2); with associated standard errors.

¢ Correlation coefficient.
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The rate data in Table 1 were also analysed using
equation (2). As expected from the good straight line
(Figure 1), the [ value was —0-01 +0-02. The results are
summarized in Table 2 together with those of Kevill and
D’Souza’s analyses on the solvolyses of 2 and 3. The /
value increases in the order 4 (-0-01+0-02)<2
(0-10+0-04)<3 (0-37+0-04), showing that the
nucleophilic solvent intervention increases in this order.

It is worth pointing out that the magnitude of the m
value decreases in the order 3 (0-89+0-04)=2
(0-82+0:04)>4 (0-74 £ 0-01). This order is opposite to
that of reactivity in TFE (k/s™' at 25°C): 3
(1-04 x 107%™ <2 (1-06x 107%)*<4 (2-86x107%). A
lower m value of a more activated chloride due to
greater B-strain is in accord with an earlier transition
state and, therefore, a reduced sensitivity to changes in
solvent ionizing power.

The present study also gives an important insight into
the magnitude of the relief of B-strain involved in the
solvolysis of 4. The previous work compared the rate of
4 with that of 3 in 80% ethanol at 25°C to yield a 4:3
rate ratio of 22.° The 4: 3 rate ratio obtained in this work
in TFE is 275 by using the specific rate 1-04 x 10™* s
for 3.7 Extrapolation of the plot for 4 in Figure 1
predicts the specific rates in TFA (Y =4.6)! and 97%
HFIP (Y, =5-08)" to be 0-61 and 1-4 s!, respectively.
By using these predicted specific rates and those
reported for 3 in TFA® and 97% HFIP® at 25°C
(6-4x10™* and 2-69x107%s”', respectively), we
obtain 4:3 rate ratios of 950 and 520, respectively.
Evidently, the B-strain effect for 4 as measured by the
solvolysis rate ratio has been underestimated by a factor
of at least 40.

The essential absence of the nucleophilic solvent
intervention and the presence of marked B-strain effect
in the solvolyses of 4 suggest that the leaving chloride
ion takes a locus that is antiperiplanar to the ters-butyl
group [Scheme 1(a)]. In this conformation the
nucleophilic solvent participation would be hampered
by the bulky rert-butyl group. The other two conforma-
tions [Scheme 1(b) and (c)] permit nucleophilic solvent
participation, but the steric strain may not be relieved:
the steric strain would rather increase in the transition
state owing to possible steric hindrance to ionization by
the tert-butyl group, as has been demonstrated in the
solvolyses of various U-shaped molecules. '
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